
Coverage Metrics for Model Checking

John Penix and Willem Visser t

Automated Software Engineering Group

tResearch Institute for Advanced Computer Science (RIACS)

NASA Ames Research Center

{jpenix, wvisser}@ptolemy, arc. nasa. gov

Abstract

When using model checking to verify programs in prac-

tice, it is not usually possible to achieve complete cov-

erage of the system. In this position paper we describe

ongoing research within the Automated Software Engi-

neering group at NASA Ames on the use of test cov-

erage metrics to measure partial coverage and provide

heuristic guidance for program model checking. We

are specifically interested in applying and developing

coverage metrics for concurrent programs that might be

used to support certification of next generation avionics
software.

1 Introduction

Model checking and testing are conceptually close

neighbors, because they both operate over executable

system models. In practice model checking is mostly

used to analyze high-level requirements and design

models of a system and testing is predominately used

for the analysis of implementations. The most com-

mon link between these two techniques, suggested in

the literature, has been to use model checking for test-

case generation []. Recent advances in applying model

checking to real programming languages [5, 8, 1, 10]

has however opened up some interesting new ways in

which testing and model checking can be used in tan-
dem.

Model checking is often claimed to be 'better' than test-

ing since all possible behaviors of a system are ana-

lyzed - the implication being that model checking might

catch subtle errors that testing might miss. While this

is true in theory, real systems tend to have very large

state-spaces (more so than designs in general). To re-

duce the size of the state-spaces that must be searched,

model checkers for programming languages typically

use abstraction techniques. However effective abstrac-

tion often requires expert user input, and as such is not

currently a solution that will find wide industrial appeal.

In case studies involving real systems, we have found

that if an error exists it is often quite obvious (in hind-

sight) and one can make it appear by only considering a
few subtle interactions rather than a multitude of com-

plex ones (a.k.a the low hanging fruit principle). Hence,

only looking at part of the state-space (or behaviors)

can be very effective for finding errors when using a

model checker to analyze a real program. Therefore,

model checking programs is very similar to program

testing: neither technique scales well to high levels of

behavioral coverage for real systems and both can be

effective at finding errors by examining a subset of pro-

gram behaviors.

One notable difference between testing and model

checking is that model checking is more suited to anal-

ysis of concurrent and reactive programs because it has

full control over the scheduling of processes, threads

and events, which is not typically the case in test-

ing. Also, because a model checker stores the pro-

gram states that it has visited, it can be more efficient

in covering the behaviors of a program [2]. In addi-

tion, abstraction frameworks, such as abstract interpre-

tation, can provide methods for constructing (conser-

vative) over-approximations and m/c search optimiza-

tions can provide (conservative) under-approximations,

both of which can be used to battle state space explo-

sion while maintaining 'full coverage' or verification

capabilities of the models.

In the following sections we present several ways in

which program model checking can be improved by

taking advantage of the close relationship to testing.

In Section 2 we discuss structural coverage measures

from testing that can measure partial coverage by model

checking, and how these measures can be used to guide
a model checker's execution. In Section 3 we show

results obtained from extending the Java PathFinder

model checker with the capability to calculate branch



coverage as well as use this coverage for guided search.

Section 4 contain a short summary of the work pre-

sented and how we hope to proceed with this research.

2 Coverage for Model Checking

During testing it is common to use structural code
coverage measures, such as decision (or branch) cov-

erage, to obtain confidence that a program has been

adeqt,ately tested. Coverage metrics include state-

ment, decision (or branch) For example, the FAA re-

quires software testing to achieve 100% modified con-

dition/decision coverage (MC/DC) in order to certify

level A criticality software for flight [7]. MC/DC cov-

erage requires that all boolean conditions within a deci-

sion independently affects the outcome of the decision.

We are currently investigating whether similar cover-

age measures can be used when analyzing only a part

of the state-space of a program during model check-

ing. The simple answer is yes: the output of a model
checker now becomes either that an error was found and

a path that shows how to get to it, or if none is found

it returns a coverage mehsure that testing engineers can

interpret as is done now. The real question is fi_ring
out why this could be useful. A model checker that can

calculate traditional structural coverage could be use-

ful in answering at least one interesting question that

many people, including the FAA, has been struggling

with for some time: how good is the MD/DC cover-

age measure at finding safety critical errors? [3]. But it

would not be clear that a partial model checking result

that includes 100% MC/DC coverage provides much of

a guarantee of error-free operation. Note that achieving

a certain structural coverage is not known to be use-

ful in finding certain types of behavioral errors, such as

timing/scheduling errors - i.e. exactly the ones model

checking is good at finding.

Model checkers are particularly suited to finding errors

in concurrent programs, but many traditional coverage

criteria are essentially only meaningful for sequential

programs. So, although it would be interesting to see

how these measures work in the concurrent context, it

may be more appropriate to investigate whether there

are coverage measures more suitable to model check-

ing. For example, the concurrent structural coverage

measures from the testing literature, such as all-du-

paths [9, 1 I], may be appropriate. A more interesting

approach may be to develop suitable behavioral cover-

age measures. For example, "relevant path coverage"

might be used to indicate coverage of the paths rel-

evant to proving a property correct. Using behavior-

based coverage metrics, it should be clear that program

abstraction techniques, such as slicing and conserva-

tive abstraction, still provide full coverage even though
some paths are not (completely) checked.

It is rather straight forward to a_ue that a model

checker, during its normal operation, can calculate a

coverage measure that can be used to evaluate how well

the model checker did with respect to established test-

ing measures. But, could these measures actually be

used to improve model checking? For example, it is

possible to guide the model checker to pick parts of the

state-space to analyze based on structural coverage of

the code that would generate those state-spaces. A sim-

ple example would be to consider only statement cov-

erage: if the model checker can next analyze a program

statement that has never executed, versus one that has,

then it picks the new one.

3 Experiments with Java PathFinder

We have been experimenting with some of these ideas

within the Java PathFinder (JPF) model checker 1 devel-

oped at NASA Ames. JPF is a model checker for Java

programs that analyzes a program by executing the un-

derlying bytecode instructions in a depth-first fashion.

We modified the system such that it records the number

of times a true and false branch in each branching in-

struction are taken. On the level of the bytecodes this

amounts to doing decision (or branch) coverage - if a
branch was taken more than 0 times then that decision ,

was covered. The model checker displays its current

coverage during execution. It quickly became apparent

that this measure is quite useful to show pro_ess within

the model checker - the coverage would converge after

some time passed, and after that would increase spo-

radically indicating some new code/behaviors are being
executed.

But most of our experiments were done while analyzing

multi-threaded Java programs, and we noticed that cer-

tain threads might achieve very low coverage although

the overall coverage measure indicate high coverage for

the complete program. We thus adapted the decision

coverage to indicate coverage for each dynamically cre-

ated thread in the program. Although this seemed to be

the most obvious way to extend sequential coverage to

concurrent coverage, we could not find any prior liter-

_Available from http:llase.arc.nasa.govljpf



atureandhencebelievethis is a novelapproach.Al-
thoughthis thread-basedcoverageis veryusefultosee
progresswithin the modelchecker,it isconservative
whenusedascoveragemeasure.Theproblemisthat
certainthreadscannotexecutecertainpartsofthecode,
andhencelowcoverageisobtainedevenin theextreme
casewherethemodelcheckercancoverall behaviors
of theprogram.Webelievethisproblemcaneasilybe
overcomebydoingstatic-analysison theprogrambe-
foremodelcheckingto calculatemorepreciselywhata
thread'spotentialcoverageshouldbe.

Toillustratesomeof theseconceptswewill usethefol-
lowingJavaprogramthatcontainsadeadlock.

class Event(

int count = 0;

public synchronized void wait_for_event()(

try(wait();)catch(InterruptedException e){};

}

public synchronized void signal_event()(

count = count + i;

notifyAll();

}}

class FirstTask extends Thread(

Event eventl,event2;

int count = 0;

public FirstTask(Event el, Event e2)(

this.eventl = el; this.event2 = e2;

)

public void run()(

count = eventl.count;

while (true) {

if (count == eventl.count)

even_l.wait for_event() ;

count = eventl.count ;

event2, signal_event () ;

) } }

class SecondTask extends Thread(

Event eventl,event2;

Int count = 0;

public SecondTask(Event el, Event e2)(

this.eventl = el; this.event2 = e2;

}

public void run(){

count _ event2.count;

while(true) (

event i. slgnal_event () ;

if (count == event2.coun_) (

event2, wai t_for_event () ;

}

count = event2.count;

} } )

class Main (

public static void maintString[] args)(

Event eventl = new Event();

Event event2 - new Event();

FirstTask taskl = new FirstTask(eventl,event2);

SecondTask task2 = new SecondTask(eventl,event2);

taskl.start(); task2.start();

}}

JPF cannot rind the deadlock in this progra,n, before

exhausting memory, because it searched in a depth-first

fashion and the count variable in the Event class is in-

cremented indefinitely, hence creating a unique state

every time. There are three threads in the program:
Main, FirstTask and SecondTask. Both First_tsk and

SecondTask have one decision point and hence two pos-

sible branches (4 branches in total). During execution

the coverage soon converges to: 0 out of 4 for Main and

I out of 4 tbr both the other two threads. But clearly

Main does not even have any branching points, hence

it in fact has full coverage, whereas the other two have

.50% coverage each.

To achieve full coverage during testing of this exam-

ple is hard since it is dependent on the scheduler. A

model checker can however do it, by trying all inter-

leavings. When the JPF feature to limit the length of

depth-first paths is used, the error is discovered within

seconds. In terms of coverage, the FirstTask stills has

50°70coverage whereas SecondTask has 100% coverage
when the error is found. This shows another unantic-

ipated feature of the coverage measure: even when an

error is found it might produce interesting results. Note

in this case the one thread is still not fully covered, and

closer inspection indicates that although the deadlock
occurred due to a race condition that manifested itself

in the SecondTask, the same thing could also have hap-

pened in the other thread. Admittedly, this is a trivial

example, and this kind of information may be harder to

interpret in real sized examples.

In order to experiment with the coverage-guided model

checking idea we adapted the JPF scheduler to ignore

threads in which the next statement is a branching state-

ment which has already been taken n times before. For

example, with n = 10, if the true branch is to be taken,

but it has already been taken 10 times before, then ig-

nore it and rather schedule another thread - the hope

being that some other interleaving of statements will

cause the false branch to be taken instead at some later

point. This required a trivial change to the JPF sched-
uler.

If we now analyze the program from the previous sec-

tion with this special branch-scheduling feature enabled

(and with no depth limit ) the error is found instantly

(even with n as small as 1!). This is an extremely en-

couraging result, but the solution adopted is rather sim-

plistic, and may ignore too much of the state-space. A



more general approach will be to order the statements

to be exect, tcd next in the model checker according to
whether or not they will improve coverage (rather than

just ignoring statements that will not improve cover-

age). We plan to extend the JPF scheduler such that
user-defined cost-functions can be added before model

checking to rank transitions for execution. This will

allow not just coverage measures to influence the rank-

ing, but also other heuristics such as shortest path to

a blocking statement (that might improve deadlock de-
tection).

4 Conclusions

We have discussed the use of coverage measures for

program model checking, where in practice analyz-

ing all possible behaviors is not tractable. We have

shown with a simple example that decision coverage

for model checking can, not only show how well the

model checker is doing, but also be used to guide a
model checker.

The next step it to see how well these techniques work

on industrial size problems. We are fortunate to have a

Java version of the DEOS kernel from Honeywell that
contains a subtle error. We, and others, have shown that

this error can be discovered with model checking [6, 4].

We would now like to see how the coverage changes in
cases where this error is found, and when it is not. This

analysis of DEOS is ongoing and we hope to present

preliminary results at the workshop.

REFERENCES

[1]

[2]

[3]

[4]

James Corbett, Matthew Dwyer, John Hatcliff,

Corina Pasareanu, Robby, Shawn Laubach, and

Hongjun Zheng. Bandera : Extracting Finite-state

Models from Java Source Code. In Proceedings

of the 22nd International Conference on Software

Engineering, Limeric, Ireland., June 2000. ACM
Press.

David Dill. Model checking java programs. In

ISSTA/FMSP Keynote Address, 2000.

Amaud Dupuy and Nancy Leveson. An empirical

evaluation of the mc/dc coverage criterion on the

hete-2 satellite software. In Proceedings of the

Digital Avionics Systems Conference, 2000.

Matthew Dwyer, John Hatcliff, Roby Joe-

hanes, Shawn Laubach, Corina Pasareanu, Robby,

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Willem Visser. and Hongjun Zheng. Tool-

supported Program Abstraction for Finite-state

Verification. In Proceedings of the 23rd Inter-

national Conference on Software Engineering (to

appear), Toronto, Cananda., May 2001. ACM
Press.

Gerard J. Hoizmann. Logic verification of ANSI-

C code with SPIN. In Proc. of the 7th Interna-

tional SPIN Workshop, volume 1885 of LNCS.

Springer-Verlag, September 2000.

J. Penix, W. Visser, E. Engstrom, A. Larson, and

N. Weininger. Verification of Time Partitioning

in the DEOS Scheduler Kernel. In Proceedings

of the 22nd International Conference on Software

Engineering, Limeric, Ireland., June 2000. ACM
Press.

RTCA Special Committee 167. Software consid-

erations in airborne systems and equipment cer

tification. Technical Report DO-178B, RTCA,

Inc., dec 1992.

SLAM. http://www.research.

microsoft.com/projects/slam/.

Richard N. Taylor, David L. Levine, and

Cheryl D. Kelly. Structural testing of concurrent

programs. IEEE Transactions on Software Engi-

neering, 18(3):206-215, 1992.

Wiilem Visser, Klaus HaveIund, Guillaume Brat,

and SeungJoon Park. Model checking programs.

In Proc. of the 15th IEEE International Confer-

ence on Automated Software Engineering, Greno-

ble, France, September 2000.

Cheer-Sun D. Yang, Arnie L. Souter, and Lori L.

Pollock. All-du-path coverage for parallel pro-

grams. In ISSTA: International Symposium on

Software Testing and Analysis, pages 153-162,
1998.


